DET KGL. DANSKE VIDENSKABERNES SELSKAB MATEMATISK-FYSISKE MEDDELELSER, bind XXV, nr. 9

ON THE UNIQUENESS OF THE POTENTIAL IN A SCHRÖDINGER EQUATION FOR A GIVEN ASYMPTOTIC PHASE

BY

N. LEVINSON

K \varnothing BENHAVN
I KOMMISSION HOS EJNAR MUNKSGAARD
1949

1. The solution $y(x, \lambda)$ of the differential equation

$$
\begin{equation*}
y^{\prime \prime}+\left(\lambda^{2}-P(x)\right) y=0 \tag{1.0}
\end{equation*}
$$

with initial values

$$
\begin{equation*}
y(0, \lambda)=0, \quad y^{\prime}(0, \lambda)=1 \tag{1.1}
\end{equation*}
$$

will, in case $P(x)$ is small enough for large x, and in case $\lambda=u \neq 0$ where u is real, satisfy

$$
\begin{equation*}
\lim _{x \rightarrow \infty}\left[y(x, u)-\frac{A(u)}{u} \sin (u x-\Phi(u)]=0\right. \tag{1.2}
\end{equation*}
$$

where $A(u)$ and $\Phi(u)$ are continuous function of $u, 0<u<\infty$. The function $\Phi(u)$ is the asymptotic phase.

The problem of determining the potential $P(x)$ from $\Phi(u)$ arises in physics. Recently C. E. Fröberg, [1], has given various approximate procedures for calculating $P(x)$ from $\Phi(u)$ based on the variation of constants formula or on one or more iterations of this formula. He treats the equation $y^{\prime \prime}-\frac{l(l+1)}{x^{2}} y+$ $\left(\lambda^{2}-(P x)\right) y=0$ where l is an integer. The equation (1.0) is the case $l=0$. Fröberg observes that his method need not of course be convergent. Indeed the question arises as to whether $\Phi(u)$ determines $P(x)$ uniquely at all. We shall show that with suitable hypotheses this is indeed the case. We shall also see that $\Phi(u)$ determines $A(u)$ in (1.2) uniquely and conversely. The theory we shall develop for (1.0) can be carried over to more general cases. (See note on p. 27 for the case $l>0$.)

Theorem I. If $P(x)$ is piecewise continuous (or more generally if $P(x)$ is Lebesgue measurable), if

$$
\begin{equation*}
P(x) \geqq 0 \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{\infty} x|P(x)| d x<\infty \tag{1.4}
\end{equation*}
$$

then (1.2) is valid where $A(u)$ and $\Phi(u)$ are continuous functions of u. There is no other potential function $Q(x)$ satisfying the same hypothesis as $P(x)$ with an identical phase function $\Phi(u)$. Moreover $\Phi(u)$ determines $A(u)$ uniquely and conversely.

The condition (1.3) can be modified. However, without (1.3) it is possible for (1.0) to have discrete characteristic values $\lambda_{k}=i v_{k}, k=1,2, \cdots$, where the v_{k} are real. Associated with each $\lambda_{k}=i v_{k}$ there is exactly one characteristic function $y\left(x, \lambda_{k}\right)$ which for large x is $O\left(e^{-v_{k} x}\right)$. If we assume

$$
\begin{equation*}
\int_{1}^{\infty} x^{2}|P(x)| d x<\infty \tag{1.5}
\end{equation*}
$$

in place of (1.3) then we shall find that there are at most a finite number of characteristic values, $\lambda_{k}=i v_{k}$, and with $v_{k} \neq 0$.

We shall see that under the hypothesis of Theorem II, if

$$
\Phi(\infty)-\Phi(+0)<\pi,
$$

then there are no discrete characteristic values. (In fact we shall find that we always have either $\Phi(\infty)=\Phi(+0)+m \pi$ or $\Phi(\infty)=\Phi(+0)+\left(\mathrm{m}+\frac{1}{2}\right) \pi$ where m is the number of characteristic values in $v>0$, i. e. with $\lambda^{2}<0$). We now have the following result.

Theorem II. If $P(x)$ is real and measureable and if

$$
\begin{equation*}
\int_{0}^{1} x|P(x)| d x+\int_{1}^{\infty} x^{2}|P(x)| d x<\infty \tag{1.6}
\end{equation*}
$$

then (1.2) is valid. If there are no discrete characteristic values, i. e., if $\Phi(\infty)-\Phi(+0)<\pi$, then there is no potential function $Q(x)$ different from $P(x)$ satisfying (1.6) and with the same phase function $\Phi(u)$. Moreover $\Phi(u)$ determines $A(u)$ uniquely and conversely.

In case $P(x)$ satisfies

$$
\begin{equation*}
\int_{0}^{1}|P(x)| d x<\infty \tag{1.7}
\end{equation*}
$$

which is a stricter requirement at $x=0$ than (1.4) or (1.6) it is possible to consider initial values of the form

$$
\begin{equation*}
y(0, \lambda)=\sin \alpha, \quad y^{\prime}(0, \lambda)=\cos \alpha \tag{1.8}
\end{equation*}
$$

In this case we could dispense with some of the lemmas we require for Theorems I and II and use known results [2, §5.3 and Chapter VI] in their place. The methods used here will carry over to cover (1.8) with the assumption (1.7). However, in practise the condition

$$
\int_{0}^{1} x|P(x)| d x<\infty
$$

is much more useful than (1.7) and we shall carry out our proofs for this case.

We shall see in the course of our proof that the spectral representation of a function $f(x)$ involves the integral

$$
\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{u^{2}}{A^{2}(u)} y(x, u) d u \int_{0}^{\infty} y(\xi, u) f(\xi) d \xi
$$

Thus we see that the weight function in this integral $u^{2} / A^{2}(u)$ determines $A(u)$, and therefore from theorems I and II also $\Phi(u)$. Thus the weight function $u^{2} / A^{2}(u)$ can arise from one $P(x)$ only.

In the course of our proof we shall also get the following relationship valid for any function $f(x)$ in $L^{2}(0, \infty)$,

$$
\begin{equation*}
\int_{0}^{\infty}|f(x)|^{2} d x=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{u^{2}}{A^{2}(u)} d u\left|\int_{0}^{\infty} y(x, u) f(x) d x\right|^{2} \tag{1.9}
\end{equation*}
$$

We shall see that there is a function of $\lambda=u+i v, F(\lambda)$, analytic for $v>0$ and continuous for $v \geqq 0$ such that for real
$\lambda=u$ we have $F(u)=A(u) e^{i \phi(u)}$. We shall see that the behavior of $F(\lambda)$ as $\lambda \rightarrow 0$ is of concern to us and for this reason we need requirement (1.3) in Theorem I and

$$
\int_{1}^{\infty} x^{2}|P(x)| d x<\infty
$$

in Theorem II.
2. Here we shall show that $\Phi(u)$ determines $A(u)$ and conversely under the hypothesis of Theorem I. Actually we shall use only (1.4) except to show that $F(0) \neq 0$ where we need (1.3). Thus most of $\S 2$ will be available to us to prove Theorem II as well.

We shall require the following results. We shall use K to denote positive constants which depend on $P(x)$ only. We recall $\lambda=u+i v$.

Lemma 2.0. If $P(x)$ satisfies (1.4) then there is a solution $y(x, \lambda)$ of (1.0) satisfying (1.1) which for any x is an entire function of λ and which for all λ satisfies

$$
\begin{equation*}
|y(x, \lambda)| \leqq \frac{K x e^{|v| x}}{1+|\lambda| x}, \quad 0 \leqq x<\infty \tag{2.0}
\end{equation*}
$$

As $|\lambda| \rightarrow \infty$

$$
\begin{equation*}
y(x, \lambda)=\frac{\sin \lambda x}{\lambda}+o\left(\frac{e^{|v| x}}{|\lambda|}\right) \tag{2.1}
\end{equation*}
$$

uniformly in $x, 0 \leqq x<\infty$. Moreover $y(x, \lambda)$ is an even function of λ.

Lemma 2.1. If $P(x)$ satisfies (1.4) then for $v \geqq 0$ there is a solution of $(1.0), y_{1}(x, \lambda)$ which for each x is an analytic function of λ for $v>0$ and continuous for $v \geqq 0$ and satisfies

$$
\begin{equation*}
\left|y_{1}(x, \lambda)\right| \leqq K e^{-v x}, \quad 0 \leqq x<\infty \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\left|y_{1}(x, \lambda)-e^{i \lambda x}\right| \leqq \frac{K e^{-v x}}{|\lambda|} \int_{x}^{\infty} P(\xi) \right\rvert\, d \xi \tag{2.3}
\end{equation*}
$$

For $v \leqq 0$ there exists a function $y_{2}(x, \lambda)$ similarly related to $e^{-i \lambda x}$ for large x or $|\lambda|$.

We shall prove these lemmas in § 5. It is clear that for $\lambda=u, y_{1}(x, u)$ and $y_{2}(x, u)$ by (2.3) are independent solutions of (1.0) for large x. Since they are independent for large x, they are independent for all $x, 0 \leqq x<\infty$. From (2.0) we have

$$
\begin{equation*}
|y(x, \lambda)| \leqq K x e^{|v| x} \tag{2.4}
\end{equation*}
$$

We also have, as can be verified by substitution into (1.0), the "variation of constants" formula

$$
\begin{equation*}
y(x, \lambda)=\frac{\sin \lambda x}{\lambda}+\frac{1}{\lambda} \int_{0}^{x} \sin \lambda(x-\xi) P(\xi) y(\xi, \lambda) d \xi \tag{2.5}
\end{equation*}
$$

Here the right side exists because of (2.4). We see from (2.5), by use of (2.4), that for $\lambda=u \neq 0$ we have as $x \rightarrow \infty$

$$
\left\{\begin{align*}
y(x, u)= & \frac{\sin u x}{u}\left(1+\int_{0}^{\infty} \cos u \xi P(\xi) y(\xi, u) d \xi\right) \tag{2.6}\\
& +\frac{\cos u x}{u} \int_{0}^{\infty} \sin u \xi P(\xi) y(\xi, u) d \xi+o(1)
\end{align*}\right.
$$

Or as $x \rightarrow \infty$

$$
y(x, u)=\frac{A(u)}{u} \sin (u x-\Phi(u))+o(1)
$$

where if

$$
F(u)=1+\int_{0}^{\infty} e^{i u \xi} P(\xi) y(\xi, u) d \xi
$$

then by (2.6)

$$
A(u)=|F(u)|, \quad \Phi(u)=\arg F(u)
$$

Since $y(x, u)$ is an even function of $u, A(u)$ is an even function. From (1.4) and (2.4) we see that

$$
\begin{equation*}
F(\lambda)=1+\int_{0}^{\infty} e^{i \lambda \xi} P(\xi) y(\xi, \lambda) d \xi \tag{2.7}
\end{equation*}
$$

is an analytic function of λ for $v>0$ and is continuous for $v \geqq 0$. The properties of $F(\lambda)$ are given in the following lemma.

Lemma 2.2. If $P(x)$ is real and satisfies (1.4) then $F(\lambda)$ defined in (2.7) is analytic in the half-plane $v>0$ and continuous for $v \geqq 0$. In $v \geqq 0$ it can vanish only for values of λ for which $u=0$. If $\lambda_{k}=i v_{k}, v_{k}>0$, is a root of $F(\lambda)=0$ then $y\left(x, i v_{k}\right)$ is a characteristic solution of (1.0) satisfying, for some $C_{k} \neq 0$,

$$
\begin{equation*}
y\left(x, \dot{i} v_{k}\right)=C_{k} y_{1}\left(x, \dot{i} v_{k}\right) \rightarrow 0 \text { as } x \rightarrow \infty \tag{2.8}
\end{equation*}
$$

For large $|\lambda|$ we have

$$
\begin{equation*}
F(\lambda)=1+o(1) \tag{2.9}
\end{equation*}
$$

uniformly for $0 \leqq \arg \lambda \leqq \pi$.
The proof of lemma 2.2 is given in $\S 5$.
For $v>0$ we have the following relationship for $e^{i \lambda x} y(x, \lambda)$ as $x \rightarrow \infty$. From (2.5) we have

$$
\left\{\begin{array}{c}
e^{i \lambda x} y(x, \lambda)=e^{i \lambda x} \frac{\sin \lambda x}{\lambda} \\
+\frac{1}{\lambda} \int_{0}^{x} \sin \lambda(x-\xi) e^{i \lambda(x-\xi)} P(\xi) y(\xi, \lambda) e^{i \lambda \xi} d \xi
\end{array}\right.
$$

Letting $x \rightarrow \infty$ and using (2.4) we get

$$
\begin{equation*}
\lim _{x \rightarrow \infty} e^{i \lambda x} y(x, \lambda)=-\frac{F(\lambda)}{2 i \lambda} \tag{2.10}
\end{equation*}
$$

We shall now introduce the hypothesis $P(x) \geqq 0$ and show that in this case $F(i v) \neq 0$ for $v \geqq 0$. We have

$$
\begin{equation*}
F(i v)=1+\int_{0}^{\infty} e^{-v \xi} P(\xi) y(\xi, i v) d \xi \tag{2.11}
\end{equation*}
$$

Since $y^{\prime \prime}=\left(v_{1}^{2}+P\right) y, \quad y\left(0, i v_{1}\right)=0$ and $y^{\prime}\left(0, i v_{1}\right)=1$ we see that $y^{\prime \prime} \geqq 0$ and thus $y^{\prime} \geqq 1$ and $y \geqq 0$. In (2.11) this yields $F(i v) \geqq 1$.

Since $F(\lambda) \neq 0$ for $v \geq 0$ and since $F(\lambda)=1+o(1)$ as $|\lambda| \rightarrow \infty$ uniformly for $0 \leqq \arg \lambda \leqq \pi$, wee see that $g(\lambda)=\log F(\lambda)$ is analytic for $v>0$ and continuous for $v \geqq 0$ and moreover we can choose $g(\lambda)$ so that

$$
\begin{equation*}
g(\lambda)=o(1) \text { as }|\lambda| \rightarrow \infty \tag{2.12}
\end{equation*}
$$

uniformly for $0 \leqq \arg \lambda \leqq \pi$. Applying Cauchy's theorem over a semi-circle of radius R with center at $\lambda=0$ and diameter on the real axis and letting $R \rightarrow \infty$ we find by use of (2.12) that

$$
\begin{equation*}
g(\lambda)=\lim _{R \rightarrow \infty} \frac{1}{2 \pi i} \int_{-R}^{R} \frac{g(\sigma)}{\sigma-\lambda} d \sigma \tag{2.13}
\end{equation*}
$$

where σ is real and $\lambda=u+i v, v>0$. In the same way if $\bar{\lambda}=u-i v, v>0$ then

$$
\begin{equation*}
0=\lim _{R \rightarrow \infty} \frac{1}{2 \pi i} \int_{-R}^{R} \frac{g(\sigma)}{\sigma-\bar{\lambda}} d \sigma \tag{2.14}
\end{equation*}
$$

Taking the conjugate of the latter formula and adding to (2.13) we find

$$
g(\lambda)=\lim _{R \rightarrow \infty} \frac{1}{\pi} \int_{-R}^{\bullet R} \frac{\operatorname{Im} g(\sigma)}{\sigma-\lambda} d \sigma
$$

Or since $\operatorname{Im} g(\sigma)=\Phi(\sigma)$

$$
\begin{equation*}
\log F(\lambda)=\lim _{R \rightarrow \infty} \frac{1}{\pi} \int_{-R}^{R} \frac{\Phi(\sigma)}{\sigma-\lambda} d \sigma \tag{2.15}
\end{equation*}
$$

Thus we see that $\Phi(u)$ determines $F(\lambda)$ and in particular then, $\Phi(u)$ determines

$$
A(u)=\lim _{v \rightarrow+0}|F(u+i v)|
$$

We observe that $\Phi(u)$ is an odd function of u. By subtracting the conjugate of (2.14) from (2.13) and using the fact that $A(u)$ is even we get for $v>0$

$$
\log F(\lambda)=\frac{2 \lambda}{\pi i} \int_{0}^{\infty} \frac{\log A(\sigma)}{\sigma^{2}-\lambda^{2}} d \sigma
$$

Thus $A(u)$ determines $F(\lambda)$ and in particular then determines

$$
\Phi(u)=\lim _{v \rightarrow+0} \operatorname{Im} \log F(u+i v)
$$

3. We now assume that there is another differential equation with $P(x)$ replaced by $Q(x)$ where $Q(x)$ satisfies the same hypothesis as $P(x)$ in Theorem I and where the asymptotic phase is again $\Phi(u)$. The equation is

$$
\begin{equation*}
z^{\prime \prime}+\left(\lambda^{2}-Q(x)\right) z=0 \tag{3.0}
\end{equation*}
$$

Since the asymptotic phase of $z(x, u)$ is $\Phi(u)$, its asymptotic amplitude is $A(u) / u$. Thus

$$
\begin{equation*}
z(x, u)=\frac{A(u)}{u} \sin (u x-\Phi(u))+o(1) \tag{3.1}
\end{equation*}
$$

as $x \rightarrow \infty$ where $z(0, u)=0$ and $z^{\prime}(0, u)=1$. There are also two solutions of $(3.0), z_{1}(x, \lambda)$ and $z_{2}(x, \lambda)$ satisfying the same conditions as y_{1} and y_{2} in Lemma 2.1.

Returning to $y(x, u)$ where $u \neq 0$ we have since y_{1} and y_{2} are independent solutions.

$$
y(x, u)=C_{1}(u) y_{1}(x, u)+C_{2}(u) y_{2}(x, u)
$$

Letting $x \rightarrow \infty$ we have

$$
\frac{A(u)}{u} \sin (u x-\Phi(u))=C_{1}(u) e^{i u x}+C_{2}(u) e^{-i u x}+o(1)
$$

From this we see that indeed the term $o(1)$ is zero and that

$$
C_{1}(u)=\frac{A(u) e^{-i \Phi(u)}}{2 i u}, \quad C_{2}(u)=-\frac{A(u) e^{i \Phi(u)}}{2 i u}
$$

Thus
(3.2) $y(x, u)=\frac{A(u)}{2 i u}\left[y_{1}(x, u) e^{-i \Phi(u)}-y_{2}(x, u) e^{i \Phi(u)}\right]$.

In exactly the same way we see that (3.1) implies

$$
\begin{equation*}
z(x, u)=\frac{A(u)}{2 i u}\left[z_{1}(x, u) e^{-i \Phi(u)}-z_{2}(x, u) e^{i \Phi(u)}\right] \tag{3.3}
\end{equation*}
$$

Let $f(x)$ be a real differentiable function which vanishes for
x near zero and for large x. Let $\max \left(|f(x)|+\left|f^{\prime}(x)\right|\right)=M$. (These requirements on $f(x)$ are somewhat more severe than is actually necessary for our argument.) We now consider the following pseudo-Green's function integrals of $f(x)$,

$$
\left\{\begin{array}{l}
H_{1}(x, \lambda)=\frac{\lambda}{F(\lambda)} y(x, \lambda) \int_{x}^{\infty} z_{1}(\xi, \lambda) f(\xi) d \xi \tag{3.4}\\
H_{2}(x, \lambda)=\frac{\lambda}{F(\lambda)} z_{1}(x, \lambda) \int_{0}^{x} y(\xi, \lambda) f(\xi) d \xi
\end{array}\right.
$$

Clearly for each $x, H_{j}, j=1,2$, is analytic in λ in the upper halfplane $v>0$ and continuous for $v \geqq 0$. Thus if c is the semicircle of radius $R, \lambda=R e^{i \theta}, 0 \leqq \theta \leqq \pi$, then for any $x, 0<x<\infty$, Cauchy's theorem yields

$$
\begin{equation*}
\int_{c} H_{j}(x, \lambda) d \lambda+\int_{-R}^{R} H_{j}(x, u) d u=0 . \tag{3.5}
\end{equation*}
$$

Let $\delta>0$ and let

$$
\begin{gathered}
J_{1}=\int_{x}^{\infty} z_{1}(\xi, \lambda) f(\xi) d \xi=\left(\int_{x}^{x+\delta}+\int_{x+\delta}^{\infty}\right) z_{1}(\xi, \lambda) f(\xi) d \xi \\
\text { Using (2.3) we get since } \int_{x}^{\infty}|P(\xi)| d \xi \leqq \int_{x}^{\infty} \xi|P(\xi)| d \xi / x \\
\left|J_{1}-\int_{x}^{x+\delta} e^{i \lambda \xi} f(\xi) d \xi\right| \leqq \frac{K e^{-v x}}{|\lambda| x} \int_{x}^{x+\delta}|f(\xi)| d \xi+\frac{K M e^{-(x+\delta) v}}{|\lambda|}\left(1+\frac{1}{x}\right)
\end{gathered}
$$

Integrating by parts we have

$$
\left|\int_{x}^{x+\delta} e^{i \lambda \xi} f(\xi) d \xi+\frac{e^{i \lambda x} f(x)}{i \lambda}\right| \leqq \frac{M \delta e^{-v x}}{|\lambda|}+\frac{M e^{-(x+\delta) v}}{|\lambda|}
$$

Thus

$$
\begin{equation*}
\left|J_{1}+\frac{e^{i \lambda x} f(x)}{i \lambda}\right| \leqq \frac{K M e^{-v x}}{|\lambda|}\left(\delta+e^{-\delta v}\right)\left(1+\frac{1}{x}\right) \tag{3.6}
\end{equation*}
$$

Therefore for large $|\lambda|=R$, using (2.1) (2.9) and (3.6)

$$
\begin{gathered}
\left|\int_{c} \frac{\lambda y(x, \lambda)}{F(\lambda)} d \lambda \int_{x}^{\infty} z_{1}(\xi, \lambda) f(\xi) d \xi+\frac{f(x)}{i} \int_{c} \frac{y(x, \lambda) e^{i \lambda x}}{F(\lambda)} d \lambda\right| \\
\leqq K M\left(\delta+\frac{1}{R \delta}\right)\left(1+\frac{1}{x}\right)
\end{gathered}
$$

If $\delta=R^{-1 / 2}$ we have uniformly in x for any closed interval of x interior to the open interval $(0, \infty)$,

$$
\lim _{R \rightarrow \infty} \int_{c} \frac{\lambda y(x, \lambda)}{F(\lambda)} d \lambda \int_{x}^{\infty} z_{1}(\xi, \lambda) f(\xi) d \xi=-\frac{1}{2} \pi i f(x)
$$

Using this in (3.5) with $j=1$ we have

$$
\begin{equation*}
f(x)=\frac{2}{\pi i} \lim _{R \rightarrow \infty} \int_{-R}^{R} \frac{u y(x, u)}{F(u)} d u \int_{x}^{\infty} z_{1}(\xi, u) f(\xi) d \xi \tag{3.7}
\end{equation*}
$$

We also have the following result.
Lemma 3.0. For any $x>0$,

$$
\frac{\lambda z_{1}(x, \lambda)}{F(\lambda)} \int_{0}^{x} y(\xi, \lambda) f(\xi) d \xi=-\frac{f(x)}{2 \lambda}+J_{2}(x, \lambda)
$$

where uniformly for any closed interval of x interior to the open interval $(0, \infty)$

$$
\lim _{R \rightarrow \infty} \int_{c}\left|J_{2}(x, \lambda)\right||d \lambda|=0
$$

The proof of this lemma is given in $\S 5$.
Using Lemma 3.0 we have
(3.8) $\lim _{R \rightarrow \infty} \int_{c}^{l} \frac{\lambda z_{1}(x, \lambda)}{F(\lambda)} d \lambda \int_{0}^{x} y(\xi, \lambda) f(\xi) d \xi=-\frac{1}{2} \pi i f(x)$.

Using (3.8) in (3.5) with $j=2$ we have

$$
\begin{equation*}
f(x)=\frac{2}{\pi i} \lim _{R \rightarrow \infty} \int_{-R}^{R} \frac{u z_{1}(x, u)}{F(u)} d u \int_{0}^{x} y(\xi, u) f(\xi) d \xi \tag{3.9}
\end{equation*}
$$

Since $\bar{z}_{1}(x, u)$ is a solution of $(3.0), \bar{z}_{1}(x, u)=C_{1} z_{1}(x, u)+$ $C_{2} z_{2}(x, u)$. Letting $x \rightarrow \infty$ we see that $\bar{z}_{1}(x, \mathrm{u})=z_{2}(x, u)$. Taking the conjugate of (3.7) and (3.9) we have therefore
(3.10) $f(x)=-\frac{2}{\pi i} \lim _{R \rightarrow \infty} \int_{-R}^{R} \frac{u y(x, u)}{\bar{F}(u)} d u \int_{x}^{\infty} z_{2}(\xi, u) f(\xi) d \xi$,
(3.11) $f(x)=-\frac{2}{\pi i} \lim _{R \rightarrow \infty} \int_{-R}^{R} \frac{u z_{2}(x, u)}{\bar{F}(u)} d u \int_{0}^{x} y(\xi, u) f(\xi) d \xi$.

Since by (3.3)

$$
z(x, u)=\frac{A^{2}(u)}{2 i u}\left(\frac{z_{1}(x, u}{F(u)}-\frac{z_{2}(x, u)}{\bar{F}(u)}\right)
$$

we have by adding (3.7) and (3.10)

$$
\begin{equation*}
f(x)=\lim _{R \rightarrow \infty} \frac{2}{\pi} \int_{-R}^{A^{2}(u)} \frac{u^{2} y(x, u)}{A^{2}} d u \int_{x}^{\infty} z(\xi, u) f(\xi) d \xi \tag{3.12}
\end{equation*}
$$

In the same way (3.9) and (3.11) give

$$
\begin{equation*}
f(x)=\lim _{R \rightarrow \infty} \frac{2}{\pi} \int_{-R}^{R} \frac{u^{2} z(x, u)}{A^{2}(u)} d u \int_{0}^{x} y(\xi, u) f(\xi) d \xi \tag{3.13}
\end{equation*}
$$

Interchanging the role of y and z we get instead of (3.12)

$$
f(x)=\lim _{R \rightarrow \infty} \frac{2}{\pi} \int_{-R}^{R} \frac{u^{2} z(x, u)}{A^{2}(u)} d u \int_{x}^{\infty} y(\xi, u) f(\xi) d \xi
$$

Combining the above with (3.13) we have

$$
\begin{equation*}
f(x)=\lim _{R \rightarrow \infty} \frac{1}{\pi} \int_{-R}^{R} \frac{u^{2} d u}{A^{2}(u)} z(x, u) \int_{0}^{\infty} y(\xi, u) f(\xi) d \xi \tag{3.14}
\end{equation*}
$$

Since the convergence above is uniform except near $x=0$ and $x=\infty$ where $f(x)$ vanishes we have
(3.15) $\int_{0}^{\infty} f^{2}(x) d x=\lim _{R \rightarrow \infty} \frac{1}{\pi} \int_{-\mathrm{R}}^{R} \frac{u^{2} d u}{A^{2}(u)} \int_{0}^{\infty} z(x, u) f(x) d x \int_{0}^{\infty} y(\xi, u) f(\xi) d \xi$.

The derivation of (3.15) is certainly valid if z is replaced by y. Thus

$$
\begin{equation*}
\int_{0}^{\infty} f^{2}(x) d x=\lim _{R \rightarrow \infty} \frac{1}{\pi} \int_{-R}^{R} \frac{u^{2} d u}{A^{2}(u)}\left(\int_{0}^{\infty} y(x, u) f(x) d x\right)^{2} \tag{3.16}
\end{equation*}
$$

and the corresponding result with y replaced by z. Combining we get

$$
\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{u^{2}}{A^{2}(u)} d u\left(\int_{0}^{\infty} y(x, u) f(x) d x-\int_{0}^{\infty} z(x, u) f(x) d x\right)^{2}=0
$$

Thus

$$
\begin{equation*}
\int_{0}^{\infty} y(x, u) f(x) d x=\int_{0}^{\infty} z(x, u) f(x) d x \tag{3.17}
\end{equation*}
$$

For any fixed u let us suppose $z(x, u) \neq y(x, u)$ at $x=x_{1}>0$. Let us suppose then that $y\left(x_{1}, u\right)-z\left(x_{1}, u\right)>0$ for some u. Since $y(x, u)$ and $z(x, u)$ are differentiable they are continuous and we must have for small $\delta>0$, where $x_{1}-\delta>0$,

$$
y(x, u)-z(x, u)>0, \quad\left|x-x_{1}\right| \leqq \delta
$$

Choose $f(x)>0$ for $\left|x-x_{1}\right|<\delta$ and $f(x)=0$ for $\left|x-x_{1}\right| \geqq \delta$. Then clearly for the value of u in question

$$
\int_{0}^{\infty}[y(x, u)-z(x, u)] f(x) d x>0
$$

which contradicts (3.17). The same argument applies of course if $z-y>0$ and we see then that $y(x, u)=z(x, u)$. Therefore from the differential equations for y and z we get

$$
\begin{equation*}
y(x, u)[P(x)-Q(x)]=0 \tag{3.18}
\end{equation*}
$$

(In case $P(x)$ or $Q(x)$ are discontinuous (3.18) holds almost everywhere.) Since $y(x, u)$ vanishes only for isolated values of x and since $x P$ and $x Q$ are integrable we have $P(x)=Q(x)$ almost everywhere which proves Theorem I.
4. Here we no longer assume $P(x) \geqq 0$ but rather that $\int_{1}^{\infty} x^{2}|P(x)| d x<\infty$ and proceed to prove Theorem II. Lemma 2.2
is valid but the argument in $\S 2$ which follows it can of course no longer be used. Now we shall show that either $F(0) \neq 0$ or else that near $\lambda=0$ and for $v \geqq 0$

$$
\begin{equation*}
F(\lambda)=\alpha \lambda+o(|\lambda|) \text { where } \alpha \neq 0 \tag{4.0}
\end{equation*}
$$

Since $F(\lambda) \rightarrow 1$ for large $|\lambda|$ and is analytic for $v>0$ and since the zeros of $F(\lambda)$ all lie on the line $u=0$ we see that either $F(0) \neq 0$ or (4.0) implies that there are at most a finite number of zeros of $F(\lambda)$ in the upper half-plane.

With $F(0)=0$ we also have
(4.1) $\quad F(\lambda)=\int_{0}^{\infty} e^{i \lambda x} y(\lambda, x) P(x) d x-\int_{0}^{\infty} y(x, 0) P(x) d x$.

Thus

$$
\left\{\begin{align*}
F(\lambda) & =\int_{0}^{\infty}\left(e^{i \lambda x}-1\right) y(x, 0) P(x) d x \tag{4.2}\\
& +\int_{0}^{\infty} e^{i \lambda x}[y(x, \lambda)-y(x, 0)] P(x) d x=I_{1}+I_{2}
\end{align*}\right.
$$

Here

$$
\begin{equation*}
I_{1}=\int_{0}^{\infty}\left(e^{i \lambda x}-1\right) y(x, 0) P(x) d x \tag{4.3}
\end{equation*}
$$

and I_{2} represents the second integral in (4.2). We have from (1.0) when $F(0)=0$
(4.4) $y^{\prime}(x, 0)=1+\int_{0}^{x} P(\xi) y(\xi, 0) d \xi=-\int_{x}^{\infty} P(\xi) y(\xi, 0) d \xi$.

Or since by Lemma $2.2,|y(x, 0)| \leqq K x$,

$$
\left|y^{\prime}(x, 0)\right| \leqq K \int_{x}^{\infty} \xi|P(\xi)| d \xi
$$

Thus

$$
\int_{1}^{\infty}\left|y^{\prime}(x, 0)\right| d x \leqq K \int_{1}^{\infty} d x \int_{x}^{\infty} \xi|P(\xi)| d \xi=K \int_{1}^{\infty} \grave{\xi}^{2}|P(\xi)| d \xi<\infty .
$$

From this we see that

$$
\begin{equation*}
|y(x, 0)|<K \tag{4.5}
\end{equation*}
$$

From (4.3)

$$
\begin{gathered}
\left|I_{1}-i \lambda \int_{0}^{\infty} x y(x, 0) P(x) d x\right| \\
\leqq \int_{0}^{\infty}\left|e^{i \lambda x}-1-i \lambda x\right||y(x, 0) P(x)| d x \\
\leqq|\lambda|^{2} \int_{0}^{1 /|\lambda|} x^{2}|y(x, 0) P(x)| d x+3|\lambda| \int_{1 /|\lambda|}^{\infty} x|y(x, 0) P(x)| d u
\end{gathered}
$$

wherein the last integral above we use $\left|e^{i \lambda x}-1\right| \leqq 2$ for $v \geqq 0$ and $2 \leqq 2|\lambda| x$ for $x \geqq 1 /|\lambda|$. Using (4.5) we see that as $|\lambda| \rightarrow 0$

$$
\begin{equation*}
I_{1}-i \lambda \int_{0}^{\infty} x y(x, 0) P(x) d x=o(|\lambda|) \tag{4.6}
\end{equation*}
$$

Now we shall show

$$
\begin{equation*}
\int_{0}^{\infty} x y(x, 0) P(x) d x \neq 0 . \tag{4.7}
\end{equation*}
$$

We have from (4.4)

$$
\begin{equation*}
y(x, 0)=x+\int_{0}^{x}(x-\xi) P(\xi) y(\xi, 0) d \xi \tag{4.8}
\end{equation*}
$$

If (4.7) is false and if $F(0)=0$ then (4.8) becomes

$$
\text { (4.9) } y(x, 0)=-x \int_{x}^{\infty} P(\xi) y(\xi, 0) d \xi+\int_{x}^{\infty} \xi(\xi) y(\xi, 0) d \xi
$$

Let $x_{1}>1$ be large enough so

$$
\int_{x_{1}}^{\infty} \xi|P(\xi)| d \xi<\frac{1}{4} .
$$

Let $\max _{x \geqq x_{1}}|y(x, 0)|=m$. Then by (4.9)

$$
m \leqq 2 \int_{x_{1}}^{\infty} \xi|P(\xi) y(\xi, 0)| d \xi \leqq \frac{1}{2} m
$$

Thus $m=0$ which is impossible and we see then that (4.7) holds. Thus from (4.6) we have as $\lambda \rightarrow 0$

$$
\begin{equation*}
I_{1}=\alpha \lambda+o(|\lambda|) \text { where } \alpha \neq 0 \tag{4.10}
\end{equation*}
$$

We show next that $I_{2}=o(|\lambda|)$ as $\lambda \rightarrow 0$. We have

$$
\begin{equation*}
I_{2}=\int_{0}^{\infty} e^{i \lambda x}[y(x, \lambda)-y(x, 0)] P(x) d x \tag{4.11}
\end{equation*}
$$

As solutions of

$$
\begin{equation*}
y^{\prime \prime}-P(x) y=0 \tag{4.12}
\end{equation*}
$$

we have $y_{3}(x)=y(x, 0)$ and an independent solution $y_{4}(x)$ chosen so that $y_{3} y_{4}^{\prime}-y_{4} y_{3}^{\prime}=1$. Since by (4.4), $y_{3}(x)-x \rightarrow 0$ as $x \rightarrow 0$ we see that a solution of (4.12) independent of y_{3} is

$$
y(x)=y_{3}(x) \int_{x} \frac{d \xi}{y_{3}^{2}(\xi)}
$$

and this is bounded as $x \rightarrow 0$. Thus y_{4} is bounded as $x \rightarrow 0$. We have obviously also

$$
y_{4}(x)=y_{4}\left(x_{1}\right)+\left(x-x_{1}\right) y_{4}^{\prime}\left(x_{1}\right)+\int_{x_{1}}^{x}(x-\xi) P(\xi) y_{4}(\xi) d \xi
$$

If $\max _{x_{1} \leqq x \leqq x_{2}}\left|\frac{y_{4}(x)}{x}\right|=m$ and if x_{1} is chosen as below (4.9) then clearly for large x_{2}

$$
m \leqq\left|y_{4}\left(x_{1}\right)\right|+\left|y_{4}^{\prime}\left(x_{1}\right)\right|+m \int_{x_{1}}^{\infty} \xi|P(\xi)| d \xi
$$

Thus

$$
\frac{3}{4} m \leqq\left|y_{4}^{\prime}\left(x_{1}\right)\right|+\left|y_{4}\left(x_{1}\right)\right|
$$

and we see that $\left|y_{4}(x)\right| \leqq K x$ for large x. Now if

$$
y^{\prime \prime}-P(x) y=f(x)
$$

then
$y(x)=c_{1} y_{3}(x)+c_{2} y_{4}(x)-\int_{0}^{x}\left[y_{3}(x) y_{4}(\xi)-y_{4}(x) y_{3}(\xi)\right] f(\xi) d \xi$.
Thus from

$$
y^{\prime \prime}(x, \lambda)-P(x) y(x, \lambda)=-\lambda^{2} y(x, \lambda)
$$

we have

$$
y(x, \lambda)=y_{3}(x)+\lambda^{2} \int_{0}^{x}\left[y_{3}(x) y_{4}(\xi)-y_{4}(x) y_{3}(\xi)\right] y(\xi, \lambda) d \xi
$$

Thus

$$
I_{2}=\lambda^{2} \int_{0}^{\infty} e^{i \lambda x} P(x) d x \int_{0}^{x}\left[y_{3}(x) y_{4}(\xi)-y_{4}(x) y_{3}(\xi)\right] \boldsymbol{y}(\xi, \lambda) d \xi
$$

Or

$$
\left|I_{2}\right| \leqq K|\lambda|^{2} \int_{0}^{\infty} x|P(x)| d x \int_{0}^{x}|y(\xi, \lambda)| e^{-v x} d \xi
$$

Using Lemma 2.0 we have

$$
\left|I_{2}\right| \leqq K|\lambda|^{2} \int_{0}^{\infty} x|P(x)| d x \int_{0}^{x} \frac{\xi}{1+|\lambda| \xi} d \xi
$$

$$
\begin{aligned}
& \text { Thus } \\
& \qquad \begin{array}{c}
\left|I_{2}\right| \leqq K|\lambda|^{2} \int_{0}^{1 /|\lambda|} x|P(x)| d x \int_{0}^{x} \xi d \xi \\
+K|\lambda|^{2} \int_{1 /|\lambda|}^{\infty} x|P(x)| d x\left(\int_{0}^{1 /|\lambda|} \xi d \xi+\int_{1 /|\lambda|}^{x} \frac{d \xi}{|\lambda|}\right) \\
\leqq K|\lambda|^{2} \int_{0}^{1 /|\lambda|} x^{3}|P(x)| d x+K \int_{1 /|\lambda|}^{\infty} x|P(x)| d x+K|\lambda| \int_{1 /|\lambda|}^{\infty} x^{2}|P(x)| d x \\
\leqq K|\lambda|^{1 / 2} \int_{0}^{1 /|\lambda|^{1 / 2}} x^{2}|P(x)| d x+K|\lambda| \int_{1 /|\lambda|^{1 / 2}}^{x^{2}|/ \lambda|} x^{2}|P(x)| d x \\
+2 K|\lambda| \\
\int_{1 / 1}^{\infty} x^{2}|P(x)| d x .
\end{array}
\end{aligned}
$$

Since $\int_{0}^{\infty} x^{2}|P(x)| d x<\infty$ we have then as $|\lambda| \rightarrow 0$

$$
I_{2}=o(|\lambda|)
$$

Thus we have demonstrated (4.0).
Exactly as in $\S 2$ we find that if $F(0) \neq 0$ then the formula

$$
\log F(\lambda)=\lim _{R \rightarrow \infty} \frac{1}{\pi} \int_{R}^{-R} \frac{\Phi(\sigma)}{\sigma-\lambda} d \sigma
$$

is valid as are the other formulae. In this case we have, since $F(\lambda) \rightarrow 1$, as $|\lambda| \rightarrow \infty$, that the total number of zeros of $F(\lambda)$
in $v>0$ is given by $(\Phi(\infty)-\Phi(-\infty)) / 2 \pi=(\Phi(\infty)-\Phi(0)) / \pi$. Since $\Phi(+0)=\Phi(0)$ here we see that if $\Phi(\infty)-\Phi(+0)<\pi$ the total number of zeros must be zero and in fact that $\Phi(\infty)=$ $\Phi(0)$. Since $\Phi(\infty)$ can be taken as zero we see that $\Phi(0)=0$ and thus if $F(0) \neq 0, F(0)>0$. If $F(0)=0$, then we can work with a contour containing a small semi-circle, γ, with center at $\lambda=0$ and radius ϱ. On $\gamma, \lambda=\varrho e^{i \theta}, 0 \leqq \theta \leqq \pi$. Thus as in (2.13) $g(\lambda)=\log F(\lambda)$ is given by

$$
g(\lambda)=\lim _{R \rightarrow \infty} \frac{1}{2 \pi i}\left(\int_{-R}^{-\varrho}+\int_{\varrho}^{R}\right) \frac{g(\sigma)}{\sigma-\lambda} d \sigma+\frac{1}{2 \pi i} \int_{\gamma} \frac{g(\sigma)}{\sigma-\lambda} d \sigma
$$

Since $g(\lambda)=\log \frac{F(\lambda)}{\lambda}+\log \lambda$ near $\lambda=0$ we find on letting $\varrho \rightarrow 0$ that since $\frac{F(\lambda)}{\lambda} \rightarrow \alpha \neq 0$ we have

$$
g(\lambda)=\lim _{R \rightarrow \infty} \frac{1}{2 \pi i} \int_{-R}^{R} \frac{g(\sigma)}{\sigma-\lambda} d \sigma
$$

from which all the other formulas relating F, A and Φ follow. Here we find that $\Phi(+0)-\Phi(-0)=-\pi$ and that the total number of zeros m of $F(\lambda)$ in $v>0$ is given by

$$
m=\frac{1}{2 \pi}(\Phi(\infty)-\Phi(+0)+\Phi(-0)-\Phi(-\infty))-\frac{1}{2} .
$$

Since $\Phi(\infty)-\Phi(+0)=\Phi(-0)-\Phi(-\infty)$ we have $m=\frac{1}{\pi}(\Phi(\infty)-$ $\Phi(+0))-\frac{1}{2}$. Since $\Phi(\infty)-\Phi(+0)<\pi$ we see that $m=0$. In fact here we must have $\Phi(\infty)=\Phi(+0)+\frac{1}{2} \pi$. Since we take $\Phi(\infty)=0$ we have $\Phi(+0)=-\frac{1}{2} \pi$. Also $\Phi(-0)=\frac{1}{2} \pi$ and as in the other case $\Phi(u)$ is an odd function. The results of $\S 3$ carry over without change thus establishing Theorem II.
$\overline{5}$. Here we prove a number of lemmas. In all these lemmas we shall require only that

$$
\begin{equation*}
\int_{0}^{\infty} x|P(x)| d x<\infty . \tag{5.0}
\end{equation*}
$$

In the proofs of Lemmas 2.0 and 2.1 the formulas are written for the case $\lambda \neq 0$. In case $\lambda=0$ the changes involved are obvious.

Proof of Lemma 2.0. Consider the sequence $y_{n}(x, \lambda)$ where $y_{0}(x, \lambda)=0$ and
(5.1) $y_{n}(x, \lambda)=\frac{\sin \lambda x}{\lambda}+\frac{1}{\lambda} \int_{0}^{x} \sin \lambda(x-\xi) P(\xi) y_{n-1}(\xi, \lambda) d \xi$.

We have if $\lambda=u+i v$, for $v \geqq 0$

$$
\begin{equation*}
\left|y_{1}(x, \lambda)-y_{0}(x, \lambda)\right|=\left|\frac{\sin \lambda x}{\lambda}\right|=x e^{v x}\left|\frac{1-e^{2 i \lambda x}}{\lambda x}\right| \tag{5.2}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\left|y_{1}-y_{0}\right|=\left|\frac{\sin \lambda x}{\lambda}\right| \leqq 4 x e^{|v| x} \tag{5.3}
\end{equation*}
$$

and this is true for all λ. Using this in (5.1) we get

$$
\left|y_{2}-y_{1}\right| \leq \int_{0}^{\rho}\left|\frac{\sin \lambda(x-\xi)}{\lambda}\right||P(\xi)| 4 \xi e^{|v| \xi} d \xi
$$

Much as we found (5.3) we have

$$
\begin{equation*}
\left|\frac{\sin \lambda(x-\xi)}{\lambda}\right| \leqq 4 x e^{|v|(x-\xi)}, \quad 0 \leqq \xi \leqq x \tag{5.4}
\end{equation*}
$$

Thus

$$
\left|y_{2}-y_{1}\right| \leqq 4^{2} x e^{|p| x} \int_{0}^{x} \xi|P(\xi)| d \xi
$$

If we set

$$
B(x)=\int_{0}^{x} \xi|P(\xi)| d \xi<\int_{0}^{\infty} x|P(x)| d x
$$

then

$$
\left|y_{2}-y_{1}\right| \leqq 4^{2} x e^{|v| x} B(x)
$$

Again from (5.1) we have

$$
\left|y_{3}-y_{2}\right| \leqq 4^{3} x e^{|v| x} \int_{0}^{x} \xi|P(\xi)| B(\xi) d \xi=4^{3} x e^{|v| x} \frac{(B(x))^{2}}{2!}
$$

Proceeding we have

$$
\left|y_{n}-y_{n-1}\right| \leqq 4^{n} x e^{|v| x} \frac{(B(x))^{n-1}}{(n-1)!}
$$

Thus in any finite range of x and finite region of $\lambda, y_{n}(x, \lambda)$ converges uniformly to a limit $y(x, \lambda)$ which is therefore analytic in λ and by (5.1) satisfies
(5.5) $y(x, \lambda)=\frac{\sin \lambda x}{\lambda}+\frac{1}{\lambda} \int_{0}^{x} \sin \lambda(x-\xi) P(\xi) y(\xi, \lambda) d \xi$.

From (5.5) we see easily that $y(x, \lambda)$ is a solution of (1.0) and satisfies

$$
y(0, \lambda)=0, \quad y^{\prime}(0, \lambda)=1
$$

Let

$$
\begin{equation*}
M(x, \lambda)=\frac{1}{x}|y(x, \lambda)|(1+|\lambda| x) e^{-|v| x} \tag{5.6}
\end{equation*}
$$

From (5.2) we have easily by considering separately $|\lambda x| \leqq 1$ and $|\lambda x|>1$,

$$
\left|\frac{\sin \lambda x}{\lambda}\right| \leqq \frac{8 x e^{|v| x}}{1+|\lambda| x}
$$

Using this in (5.5) we have

$$
\frac{x M(x, \lambda) e^{|v| x}}{1+|\lambda| x} \leqq \frac{8 x e^{|v| x}}{1+|\lambda| x}+8 \int_{0}^{x} \frac{(x-\xi) e^{|v|(x-\xi)}}{1+|\lambda|(x-\xi)}|P(\xi)| \frac{M(\xi, \lambda) \xi e^{|v| \xi}}{1+|\lambda| \xi} d \xi
$$

Or

$$
M(x, \lambda) \leqq 8+8 \int_{0}^{x} \xi|P(\xi)| M(\xi, \lambda) d \xi
$$

By a well known inequality this implies

$$
M(x, \lambda) \leqq 8 \exp \left(8 \int_{0}^{x} \xi|P(\xi)| d \xi\right)
$$

Using (5.0) we have $M(x, \lambda) \leqq K$. With (5.6) this gives

$$
\begin{equation*}
|y(x, \lambda)| \leqq \frac{K x e^{|v| x}}{1+|\lambda| x} \tag{5.7}
\end{equation*}
$$

In (5.5) this gives

$$
\left\{\begin{array}{l}
\left|y(x, \lambda)-\frac{\sin \lambda x}{\lambda}\right| \leqq \frac{K e^{|\nu| x}}{|\lambda|} \int_{0}^{\infty} \frac{|\xi|}{1+|\lambda| \xi}|P(\xi)| d \xi \\
\leqq \frac{K e^{|v| x}}{|\lambda|}\left(\int _ { 0 } ^ { 1 } \left(\left.\left.|\lambda|\right|^{1 / 2} \xi(\xi)\left|d \xi+\frac{1}{|\lambda|^{1 / 2}} \int_{1}^{\infty} \xi\right| \right\rvert\, \lambda\left(\left.\xi\right|^{1 / 2}\right.\right.\right. \\
\infty \\
\hline
\end{array}\right.
$$

Thus as $|\lambda| \rightarrow \infty$

$$
y(x, \lambda)=\frac{\sin \lambda x}{\lambda}+o\left(\frac{e^{|\nu| x}}{|\lambda|}\right) .
$$

That $y(x, \lambda)$ is an even function of λ is clear from the fact that each $y_{n}(x, \lambda)$ is even. The completes the proof of the lemma.

Proof of Lemma 2.1. Let $W_{0}(x, \lambda)=0$ and let
(5.8) $W_{n}(x, \lambda)=e^{i \lambda x}-\frac{1}{\lambda} \int_{x}^{\infty} \sin \lambda(x-\xi) P(\xi) W_{n-1}(\xi, \lambda) d \xi$.

From (5.3) for $v \geqq 0$

$$
\left|\frac{\sin \lambda(x-\xi)}{\lambda}\right| \leqq 4(\xi-x) e^{v(\xi-x)}, \quad \xi \geqq x .
$$

Clearly $\left|W_{1}-W_{0}\right| \leqq e^{-v x}$ and

$$
\begin{gathered}
\left|W_{2}(x, \lambda)-W_{1}(x, y)\right| \leq 4 \int_{x}^{\infty}(\xi-x) e^{v(\xi-x)}|P(\xi)| e^{-v \xi} d \xi \\
\leq 4 e^{-v x} \int_{x}^{\infty} \xi|P(\xi)| d \xi .
\end{gathered}
$$

If

$$
B(x)=\int_{x}^{\infty} \xi \mid P(\xi) d \xi
$$

then

$$
\left|W_{2}-W_{1}\right| \leqq 4 e^{-v x} B(x) .
$$

Again

$$
\left\{\begin{array}{l}
\left|W_{3}-W_{2}\right| 4^{2} e^{-v x} \int_{x}^{\infty} \xi|P(\xi)| B(\xi) d \xi \\
=4^{2} e^{-v x} \frac{(B(x))^{2}}{2!} \leqq 4^{2} e^{-v x} \frac{(B(o))^{2}}{2!}
\end{array}\right.
$$

etc. Thus $W_{n}(x, \lambda)$ converges uniformly for $v \geqq 0$ and $0 \leqq x<\infty$ to a limit we denote by $y_{1}(x, \lambda)$. Clearly

$$
\left|y_{1}(x, \lambda)\right| \leqq K e^{-v x}
$$

and from (5.8)
(5.9) $y_{1}(x, \lambda)=e^{i \lambda x}-\frac{1}{\lambda} \int_{x}^{\infty} \sin \lambda(x-\xi) P(\xi) y_{1}(\xi, \lambda) d \xi$.

From this we have

$$
\begin{equation*}
\left|y_{1}(x, \lambda)-e^{i \lambda x}\right| \leqq \frac{K e^{-v x}}{|\lambda|} \int_{x}^{\infty}|P(\xi)| d \xi \tag{5.10}
\end{equation*}
$$

This proves the lemma.
Proof of Lemma 2.2. That

$$
F(\lambda)=1+\int_{0}^{\infty} e^{i \lambda x} y(x, \lambda) P(x) d x
$$

is analytic for $v>0$ and continuous for $v \geq 0$ follows from Lemma 2.0 and (5.0). That $F(\lambda)=1+o(1)$ uniformly in $v \geq 0$ as $|\lambda| \rightarrow \infty$ follows from use of

$$
\begin{aligned}
& \left.\left||F(\lambda)-1| \leqq K \int_{0}^{\infty} \frac{\xi}{1+|\lambda| \xi}\right| P(\xi) \right\rvert\, d \xi \\
& \left.\leqq K \int_{0}^{1 / 1 / \lambda| |^{1 / 2}} \xi|P(\xi)| d \xi+\frac{K}{|\lambda|^{1 / 2}} \int_{0}^{\infty} \xi| | \lambda|\lambda|^{1 / 2}(\xi) \right\rvert\, d \xi .
\end{aligned}
$$

For real $\lambda=u \neq 0$ we have as in (3.2)

$$
y(x, u)=\frac{A(u)}{2 \dot{u} u}\left[y_{1}(x, u) e^{-i \Phi(u)}-y_{2}(x, u) e^{i \Phi u}\right]
$$

If $F(u)=0$ then $A(u)=0$ and $y(x, u)=0$ which is impossible. Thus $F(u) \neq 0$ for $u \neq 0$.

Let $F(\lambda)$ vanish for some $\lambda_{1}=u_{1}+i v_{1}, v_{1}>0$. For large x

$$
y_{3}\left(x, \lambda_{1}\right)=-2 i \lambda_{1} y_{1}\left(x, \lambda_{1}\right) \int_{0}^{\bullet x} \frac{d \xi}{y_{1}^{2}\left(\xi, \lambda_{1}\right)}
$$

is a solution of (1.0). Since $y_{1}\left(x, \lambda_{1}\right) \sim e^{i \lambda_{1} x}$ we have

$$
y_{3}\left(x, \lambda_{1}\right) \sim e^{-i \lambda_{1} x}
$$

as $x \rightarrow \infty$. Moreover from (5.9) we also get

$$
\begin{equation*}
y_{1}^{\prime}(x, \lambda) \sim i \lambda_{1} e^{i \lambda_{1} x} \tag{5.11}
\end{equation*}
$$

Since y_{1} and y_{3} are obviously independent

$$
y\left(x, \lambda_{1}\right)=c_{1} y_{1}\left(x, \lambda_{1}\right)+c_{2} y_{3}\left(x, \lambda_{1}\right)
$$

If $F\left(\lambda_{1}\right)=0$ we see from (2.10) that we must have $c_{2}=0$.
Thus

$$
\begin{equation*}
y\left(x, \lambda_{1}\right)=c_{1} y_{1}\left(x, \lambda_{1}\right) \sim c_{1} e^{i \lambda_{1} x} \tag{5.12}
\end{equation*}
$$

and from (5.11)

$$
\begin{equation*}
y^{\prime}\left(x, \lambda_{1}\right) \sim i c_{1} \lambda_{1} e^{i \lambda_{1} x} \tag{5.13}
\end{equation*}
$$

Using a familiar argument we have that the conjugate of $y\left(x, \lambda_{1}\right)$, $\bar{y}\left(x, \lambda_{1}\right)$ is a solution of (1.0) with λ_{1} replaced by $\bar{\lambda}_{1}=u_{1}-i v_{1}$. Thus

$$
\left\{\begin{array}{c}
y\left(x, \lambda_{1}\right) \bar{y}^{\prime}\left(x, \lambda_{1}\right)-\bar{y}\left(x, \lambda_{1}\right) y^{\prime}\left(x, \lambda_{1}\right) \\
+\left(\bar{\lambda}_{1}^{2}-\lambda_{1}^{2}\right) \int_{0}^{x}\left|y\left(x, \lambda_{1}\right)\right|^{2} d x=0
\end{array}\right.
$$

Letting $x \rightarrow \infty$ and using (5.12) and (5.13) we have

$$
\left(\bar{\lambda}_{1}^{2}-\lambda_{1}^{2}\right) \int_{0}^{\infty}\left|y\left(x, \lambda_{1}\right)\right|^{2} d x=0
$$

Thus $u_{1}=0$ and $\lambda_{1}=i v_{1}$ if $F\left(\lambda_{1}\right)=0$. This completes the proof of the lemma.

We prove finally

Lemma 3.0. We have by (5.5)

$$
\left\{\begin{align*}
J & =\frac{\lambda z_{1}(x, \lambda)}{F(\lambda)} \int_{0}^{x} y(\xi, \lambda) f(\xi) d \xi=\frac{z_{1}(x, \lambda)}{F(\lambda)} \int_{0}^{x} \sin \lambda \xi f(\xi) d \xi \tag{5.14}\\
& +\frac{z_{1}(x, \lambda)}{F(\lambda)} \int_{0}^{x} f(\xi) d \xi \int_{0}^{\xi} \sin \lambda(\xi-s) P(s) y(s, \lambda) d s=I_{1}+I_{2}
\end{align*}\right.
$$

Clearly on integrating by parts

$$
I_{1}=\frac{z_{1}(x, \lambda)}{F(\lambda)}\left[-f(x) \frac{\cos \lambda x}{\lambda}+\frac{1}{\lambda} \int_{0}^{x} \cos \lambda \xi f^{\prime}(\xi) d \xi\right]
$$

Thus for large $|\lambda|$ and $v \geqq 0$ using (2.2) and (2.9)

$$
\left|I_{1}+\frac{z_{1}(x, \lambda) f(x) \cos \lambda x}{\lambda F(\lambda)}\right| \leqq \frac{K e^{-\delta v}}{|\lambda|} \int_{0}^{x-\delta}\left|f^{\prime}(\xi) d \xi\right|+\frac{K M \delta}{|\lambda|}
$$

where we recall $M=\max \left(|f(x)|+\left|f^{\prime}(x)\right|\right)$. Or by (5.10) and the above inequality for large $|\lambda|$

$$
\left\{\begin{align*}
\left|I_{1}+\frac{1}{2 \lambda} f(x)\right| \leqq & \left|I_{1}+\frac{1}{2 \lambda} \frac{F(\lambda)}{} f(x)\right|+\left|\frac{f(x)(F(\lambda)-1)}{2 \lambda F(\lambda)}\right| \tag{5.15}\\
\leqq \frac{K M x e^{-\delta v}}{|\lambda|}+ & \frac{K M \delta}{|\lambda|}+\left|\frac{f(x)(F(\lambda)-1)}{2 \lambda F(\lambda)}\right|+\frac{M e^{-2 v x}}{|\lambda|} \\
& +\frac{K M}{|\lambda|^{2}} \int_{0}^{\infty} P(\xi) d \xi .
\end{align*}\right.
$$

For I_{2} we have inverting the order of integration

$$
\begin{equation*}
I_{2}=\frac{z_{1}(x, \lambda)}{F(\lambda)} \int_{0}^{x} y(s, \lambda) P(s) D(x, s, \lambda) d s \tag{5.16}
\end{equation*}
$$

where

$$
D=\int_{s}^{x} f(\xi) \sin \lambda(\xi-s) d \xi
$$

Integrating by parts we find

$$
D=-\frac{\cos \lambda(x-s)}{\lambda} f(x)+\frac{f(s)}{\lambda}+\frac{1}{\lambda} \int_{s}^{x} \cos \lambda(\xi-s) f^{\prime}(\xi) d \xi
$$

Thus for large $|\lambda|$

$$
|D| \leqq \frac{4 M e^{v(x-s)}(x+1)}{|\lambda|}
$$

Therefore

$$
\left|I_{2}\right| \leqq \frac{M K(x+1)}{|\lambda|} \int_{0}^{e x} \frac{s}{1+|\lambda| s}|P(s)| d s
$$

We have easily since $|\lambda|=R$ on c

$$
\int_{c}\left|I_{2}\right||d \lambda| \leqq M K(x+1) \pi \int_{0}^{e^{x}} \frac{s}{1+R s}|P(s)| d s
$$

Thus as $R \rightarrow \infty$

$$
\begin{equation*}
\int_{c}\left|I_{2}\right||d \lambda| \rightarrow 0 \tag{5.17}
\end{equation*}
$$

uniformly in x over any finite interval of x. From (5.15) we also have easily for $x>0$ that as $|\lambda|=R \rightarrow \infty$

$$
\begin{equation*}
\int_{c}\left|I_{1}-\frac{f(x)}{2 \lambda}\right||d \lambda| \rightarrow 0 \tag{5.18}
\end{equation*}
$$

providing we take $\delta=R^{-1 / 2}$, uniformly in x over any closed interval in x interior to the open interval $(0, \infty)$. But (5.17) and (5.18) complete the proof of Lemma 3.0.

In the introduction we remarked that Plancherel's theorem (1.9) holds for $f(x) \varepsilon L^{2}(0, \infty)$. In (3.16) we proved it for a restricted class. It is easy to exploit (3.16) to show that for any $f(x) \varepsilon L^{2}(0, \infty)$

$$
g(u)=\underset{a \rightarrow \infty}{\operatorname{li.m}} \frac{u}{A(u)} \int_{0}^{a} f(x) y(x, u) d x
$$

must exist and that

$$
\int_{0}^{\infty}(g(u))^{2} d u=\int_{0}^{\infty}(f(x))^{2} d x .
$$

In case (1.0) has discrete characteristic values it is still the case that $\Phi(u)$ determines $F(\lambda)$. Indeed it can be shown that the zeros of $F(\lambda)$ which as we have seen occur at characteristic values $\lambda_{k}=i v_{k}$ are all simple. If the characteristic values are known then clearly

$$
G(\lambda)=F(\lambda) \prod_{k=1}^{m}\left(\frac{1+\frac{\lambda}{i v_{k}}}{1-\frac{\lambda}{i v_{k}}}\right)
$$

is free of zeros for $v>0$ and thus $\log G(\lambda)$ is analytic. Moreover $|G(u)|=|F(u)|$ and

$$
\arg G(u)=\arg F(u)+\sum_{k=1}^{m} \arg \left(\frac{1+\frac{u}{i v_{k}}}{1-\frac{u}{i v_{k}}}\right)
$$

Thus $G(\lambda)$ can be found and therefore also $F(\lambda)$.

Added March 9, 1949.

The method used in proving Theorem I carries over to the equation

$$
\begin{equation*}
y^{\prime \prime}+\left(u^{2}-\frac{l(l+1)}{x^{2}}-P(x)\right) y=0 \tag{1}
\end{equation*}
$$

where l is a positive integer and $P(x)$ satisfies (1.4). Indeed if $j_{l}(x)=\left(\frac{\pi x}{2}\right)^{\frac{1}{2}} J_{l+\frac{1}{2}}(x)$ where $J_{l+\frac{1}{2}}(x)$ is the Bessel function then (1) has a solution $y(x, u)$ which satisfies

$$
\begin{equation*}
\lim _{x \rightarrow+0} \frac{y(x, u)}{j_{l}(x)}=1 \tag{2}
\end{equation*}
$$

(We recall that except for a constant $j_{l}(x)$ acts like x^{l+1} as $x \rightarrow 0$.) Moreover for any $u>0$,

$$
\begin{equation*}
y(x, u)-\frac{A(u)}{u^{l+1}} \sin \left(u x-\frac{1}{2} l \pi-\Phi(u)\right) \rightarrow 0 \tag{3}
\end{equation*}
$$

as $x \rightarrow \infty$. It is indeed the case that $\Phi(u)$ determines $P(x)$ uniquely if

$$
\begin{equation*}
\frac{l(l+1)}{x^{2}}+P(x) \geq 0 \tag{4}
\end{equation*}
$$

(and as already stated if (1.4) is satisfied). (The condition (4) has considerably wider possibilities in application than the special case $l=0$.)

To indicate the modifications necessary for the case $l>0$ we introduce

$$
h_{l}(x)=\left(\frac{\pi x}{2}\right)^{\frac{1}{2}} H_{l+\frac{1}{2}}^{(1)}(x)=e^{i\left(x-\frac{1}{2} l \pi-\frac{1}{2} \pi\right)}\left[1-\frac{l(l+1)}{2 i x}+\cdots\right]
$$

where $H_{l+\frac{1}{2}}^{(1)}(x)$ is a Hankel function. Clearly $h_{l}(u x)$ is a solution of (1) with $P \equiv 0$ as is $h_{l}(-u x)$. We also have

$$
j_{l}(x)=\frac{1}{2}\left[h_{l}(x)-(-1)^{l} h_{l}(-x)\right]
$$

and

$$
k_{l}(x)=\frac{1}{2 i}\left[h_{l}(x)+(-1)^{l} h_{l}(-x)\right]
$$

from which it follows that

$$
j_{l}(x)+i k_{l}(x)=h_{l}(x)
$$

If

$$
\left\{\begin{array}{c}
g(x, \xi, \lambda)=j_{l}(\lambda \xi) k_{l}(\lambda \xi)-j_{l}(\lambda \xi) k_{l}(\lambda x) \\
=\frac{(-1)^{l}}{2 i}\left[h_{l}(\lambda x) h_{l}(-\lambda \xi)-h_{l}(-\lambda x) h_{l}(\lambda \xi)\right]
\end{array}\right.
$$

then the "variation of constants" formula (2.5) becomes

$$
\begin{equation*}
y(x, \lambda)=\frac{j_{l}(\lambda x)}{\lambda^{l+1}}-\frac{1}{\lambda} \int_{0}^{x} g(x, \xi, \lambda) P(\xi) y(\xi, \lambda) d \xi \tag{5}
\end{equation*}
$$

It is easy to show that, with $\lambda=u+i v$, and $v \geqq 0$

$$
\left|j_{l}(\lambda x)\right| \leqq K e^{v x} \frac{|\lambda x|^{l+1}}{(1+|\lambda x|)^{l+1}}, \quad x \leqq 0
$$

for some constant K, and also for $x \geqq \xi \geqq 0$

$$
|g(x, \xi, \lambda)| \leqq K e^{v(x-\xi)} \frac{(1+|\lambda \xi|)^{l}}{|\lambda \xi|^{l}} \frac{|\lambda x|^{l+1}}{(1+|\lambda x|)^{l+1}}
$$

Using these we get from (5) the analogue of Lemma (2.0) including (3). Here we also find for $v \geqq 0$ as a generalization of (2.7)

$$
F(\lambda)=1-i \int_{0}^{\infty} \lambda^{l} y(\xi, \lambda) P(\xi) h_{l}(\lambda \xi) d \xi
$$

where $A(u)=|F(u)|$ and $\Phi(u)=\arg F(u)$. Instead of (5.9) we have

$$
y_{1}(x, \lambda)=h_{l}(\lambda x)+\frac{1}{\lambda} \int_{x}^{\infty} g(x, \xi, \lambda) P(\xi) y_{1}(\xi, \lambda) d \xi
$$

These indications suffice to show the changes in going from the case of Theorem I $(l=0)$ to the general case.

Added in proof: An analogue of Theorem II for $l>0$ also holds. Interesting examples of cases where the phase does not
determine the potential (owing to the presence of discrete characteristic values, i.e. bound states) have been given by V. Bargmann (Phys. Rev. 75 (1949) p. 301).
(This paper was written while the author was a John Simon Guggenheim Memorial Fellow on leave from the Massachusetts Institute of Technology.)

Literature.

[1] Fröberg, C. E. Calculation of the potential from the asymptotic phase, Arkiv för Mat. Astr. och Fysik, Band 34 A, No. 28, Band 36 A, No. 11, 1948.
[2] Titchmarsh, E. C. Eigenfunction Expansions associated with Second Order Differential Equations, Oxford 1946.

